Insulation Test System

Brief Overview of Phenomena .. 2
Applicable Standards ... 3
Test System Overview .. 3
Generator Specifications ... 5
Accessories and Options ... 9
Software .. 10
Brief Overview of Phenomena

General

Insulation plays a great role in electro-technology, as well as electric power generation, power distribution and loads. Insulation can be stressed by a number of factors. Slowly increasing over voltages can be generated by transmission line switching, turning off heavy loads, switching of capacitive or inductive currents or by lightning strikes on power lines. The disturbance time is in the order of ms. Fast increasing over voltages are generated by switching actions related to failures and lightning in power lines and switch yards. Disturbance times are in the order of μs. Also, lightning in the vicinity of transmission power lines can induce over voltages. Very fast increasing over voltages are generated by switching or failures in gas insulated stations or substations (GIS). The very fast switching occurs as a result of high field levels before breakdown occurs in the gas (ns). Despite the fast switching phenomena, gas insulation has many advantages over conventional methods. The main advantage is that voltage withstand capability does not change with time, whereas oil/paper or solid insulators degrade with time or can even be destroyed by partial discharges. Insulation tests are to ensure that there is no breakdown or repeated flash over. Several test methods can be employed. A.C., D.C. and peak impulse are alternative test methods. It is sufficient that the equipment passes any one of the three. Impulse tests have the advantage of reduced power dissipation in the components and protection devices can be left in circuit.

EMC Partner voltage Insulation Test Systems are applied to ensure the safe operation of transformers, cables, switches and a multitude of other products. The 1.2/50 μs voltage wave is used for impulse insulation tests.

Impulse testing is performed on components and assemblies either during production or post installation as part of a routine maintenance regime. Accurate monitoring and assessment of the impulse wave shape is an essential part of the test as voltage breakdown is indicated by a change in the waveshape.

1.2/50us voltage impulse

Impulse transients can be generated by external events such as lightning or internal events like switching. The result is a voltage impulse with low energy content that appears between windings in transformers, between power lines or across physical gaps between conductors and cases etc. A normalised voltage impulse of 1.2/50us is defined in the standards IEC 60060-1 and IEC61180-1.

1.2/50us voltage & 8/20us current impulses

Surge events can be generated by lightning phenomena, switching transients or the activation of protection devices in the power distribution system. A surge itself is influenced by the propagation path taken so that impulses from the same event may have different forms depending upon where a measurement is taken. Combination Wave Generators (CWG) simulate a surge event in power lines close to or within buildings they are energy rich and should breakdown occur, an impulse current will be available that is an additional stress.

250/2500us switching impulse

Internal overvoltages as a result of breakdown or switching operations in high voltage networks generate impulses with a long time to peak and much longer duration than lightning events. Pulses to simulate these switching operations are characterized with a risetime of 250us and a duration of 2500us. Typically these long pulses are used in transformer testing.
Applicable Standards

International Electrotechnical Committee (IEC)

IEC 61000-4-5 Ed2 (2005) Electromagnetic compatibility (EMC)
Part 4-5: Testing and measurement techniques - Surge immunity test

IEC 61180-1 Ed1 (1992) High-voltage test techniques for low voltage equipment
Part 1: Definitions, test and procedure requirements

Part 1: General definitions and test requirements IEC60335

Part 2: Requirements for testing

IEC 60664-1 Ed2 (2007) Insulation coordination for equipment within low-voltage systems
Part 1: Principles, requirements and tests

IEC 60065 Ed7.1 (2005)
Audio, video and similar electronic apparatus – Safety requirements

Test System Overview

Test System Features

The Insulation Test System has many unique and outstanding features:

- Insulation test 40Ω
- Insulation test 500Ω
- Insulation test 0.5Joule
- Combination Wave Tests
- Voltages from 250V up to 96kV
- Integrated personal safety
- Integrated measurement
- Voltage ramp features
- Electronic polarity change
- Semiconductor switches
- Compact designs
- High degree of automation without software
- 2 year warranty
User Benefits

The technical excellence and many unique features of EMC PARTNERS Insulation testers translate directly into benefits for the user.

- Range of voltage / impedance combinations to meet multiple Applications
- Standard control unit, reduces user training
- Measurement system delivers information about insulation breakdown
- Integration into existing test facilities saves engineering costs.
- Pass / Fail indication for individual samples, speeds up production
- High degree of automation, reduces operator workload
- Save operator time with the automated test routines and test report facility.
- Unparalleled reliability and system up-time

Generators

A range of generators are available to cover dielectric withstand tests up to 144kV.

The generators all employ a patented EMC PARTNER voltage module that enables the same topology to be used for a generator capable of 6kV or 144kV. The same control unit and software is common across the whole range. For all generators, the most significant test parameters can be programmed as fixed values on the instrument front panel or using one of the EMC PARTNER software packages.

- **MIG0603**
 Impulse voltage tester 1.2/50µs voltage range 0.5kV up to 6kV. Series resistor 40ohm

- **MIG1203 and MIG1203SOLAR**
 Impulse voltage tester 1.2/50µs voltage range 1kV up to 12kV. Impedance 40ohm

- **MIG1203S250**
 Compact voltage Impulse tester with 1.2/50µs, 250/2500µs and 1/1000µs. Maximum 12kV. Impedance 40 and 500ohm.

- **MIG1803**
 Impulse voltage tester 1.2/50µs voltage range 1kV up to 18kV. Series resistor 40ohm

- **MIG1803-12**
 Impulse voltage tester 1.2/50µs voltage range 1kV up to 18kV. Series resistor 500ohm. Combination wave 0.25kV up to 18kV. Virtual impedance 12ohm

- **MIG2403**
 Impulse voltage tester 1.2/50µs voltage range 2kV up to 24kV. Series resistor 40ohm

- **MIG3603C**
 Impulse voltage tester 1.2/50µs voltage range 2kV up to 36kV. Series resistor 500ohm. Impulse voltage tester 1.2/50µs voltage range 0.25kV up to 6kV. Series resistor 500ohm. Impulse voltage tester 1.2/50µs voltage range 2kV up to 36kV. Source impedance 12ohm. Combination wave 0.25kV up to 6kV. 0.125kA up to 3kA. Virtual impedance 2ohm

- **MIG4803**
 Impulse voltage tester 1.2/50µs voltage range 2kV up to 48kV. Source impedance 500ohm. Combination wave 0.25kV up to 6kV. 0.125kA up to 3kA. Virtual impedance 2ohm

- **MIG14403**
 Insulation tester 1.2/50µs with two source impedances: 48 Ohm and 500 Ohm. Up to 144kV, max 3000A, current waveform approx. 8/20µs.
Component Tests: Insulation Test System

Generator Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Impulse Voltage 1.2/50µs</th>
<th>Voltage range</th>
<th>Voltage increment</th>
<th>Impulse capacitor</th>
<th>Source Impedance</th>
<th>Maximum energy</th>
<th>Pulse front time</th>
<th>Pulse duration</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIG0603</td>
<td></td>
<td>0.25 up to 6kV</td>
<td>3 digit plus comma</td>
<td>10µF</td>
<td>40 Ω</td>
<td>200 Joule</td>
<td>1.2 µs</td>
<td>50 µs</td>
<td>positive, negative, alternating</td>
</tr>
<tr>
<td>MIG1203</td>
<td></td>
<td>0.5 up to 12kV</td>
<td>3 digit plus comma</td>
<td>5µF</td>
<td>40 Ω</td>
<td>420 Joule</td>
<td>1.2 µs</td>
<td>50 µs</td>
<td>positive, negative, alternating</td>
</tr>
<tr>
<td>MIG1203SOLAR</td>
<td></td>
<td>0.5 up to 12kV</td>
<td></td>
<td>2.5µF</td>
<td>40 Ω</td>
<td>90 Joule</td>
<td>1.2 µs</td>
<td>50 µs</td>
<td>positive, negative, alternating</td>
</tr>
<tr>
<td>MIG1203S250</td>
<td></td>
<td>0.5 up to 12kV</td>
<td></td>
<td>5µF</td>
<td>40 Ω and 470 Ω</td>
<td>420 Joule</td>
<td>1.2 µs</td>
<td>50 µs</td>
<td>positive, negative, alternating</td>
</tr>
</tbody>
</table>

Pulse front time (1) 1.2 µs
Pulse duration (1) 50 µs
Pulse front time (2) 250 µs
Pulse duration (2) 2500 µs
Pulse front time (3) 1 µs
Pulse duration (3) 1000 µs
<table>
<thead>
<tr>
<th>Model</th>
<th>Impulse Voltage 1.2/50μs</th>
<th>Impulse Voltage 1.2/50μs</th>
<th>Impulse Voltage 8/20μs</th>
<th>Impulse Voltage 1.2/50μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIG1803</td>
<td>Voltage range 0.75 up to 18kV</td>
<td>Voltage range 0.2 up to 18kV</td>
<td>Voltage range 0.2 up to 18kV</td>
<td>Voltage range 1 up to 24kV</td>
</tr>
<tr>
<td></td>
<td>Voltage increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
<td>电压 increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
</tr>
<tr>
<td></td>
<td>Impulse capacitor 3.33μF</td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 2.5μF</td>
</tr>
<tr>
<td></td>
<td>Source Impedance 40 Ω</td>
<td>Source Impedance 12Ω</td>
<td>Source Impedance 12Ω</td>
<td>Source Impedance 40 Ω</td>
</tr>
<tr>
<td></td>
<td>Maximum energy 630 Joule</td>
<td>Maximum energy 280 Joule</td>
<td>Maximum energy 280 Joule</td>
<td>Maximum energy 840 Joule</td>
</tr>
<tr>
<td></td>
<td>Pulse front time 1.2 μs</td>
<td>Pulse front time 1.2 μs</td>
<td>Pulse front time 8 μs</td>
<td>Pulse front time 1.2 μs</td>
</tr>
<tr>
<td></td>
<td>Pulse duration 50 μs</td>
<td>Pulse duration 50 μs</td>
<td>Pulse duration 20 μs</td>
<td>Pulse duration 50 μs</td>
</tr>
<tr>
<td></td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
</tr>
<tr>
<td>MIG1803-12</td>
<td>Voltage range 0.75 up to 18kV</td>
<td>Voltage range 0.2 up to 18kV</td>
<td>Voltage range 0.2 up to 18kV</td>
<td>Voltage range 1 up to 24kV</td>
</tr>
<tr>
<td></td>
<td>Voltage increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
<td>电压 increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
</tr>
<tr>
<td></td>
<td>Impulse capacitor 3.33μF</td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 2.5μF</td>
</tr>
<tr>
<td></td>
<td>Source Impedance 40 Ω</td>
<td>Source Impedance 12Ω</td>
<td>Source Impedance 12Ω</td>
<td>Source Impedance 40 Ω</td>
</tr>
<tr>
<td></td>
<td>Maximum energy 630 Joule</td>
<td>Maximum energy 280 Joule</td>
<td>Maximum energy 280 Joule</td>
<td>Maximum energy 840 Joule</td>
</tr>
<tr>
<td></td>
<td>Pulse front time 1.2 μs</td>
<td>Pulse front time 1.2 μs</td>
<td>Pulse front time 8 μs</td>
<td>Pulse front time 1.2 μs</td>
</tr>
<tr>
<td></td>
<td>Pulse duration 50 μs</td>
<td>Pulse duration 50 μs</td>
<td>Pulse duration 20 μs</td>
<td>Pulse duration 50 μs</td>
</tr>
<tr>
<td></td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
</tr>
<tr>
<td>MIG2403</td>
<td>Voltage range 1 up to 24kV</td>
</tr>
<tr>
<td></td>
<td>Voltage increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
<td>电压 increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
</tr>
<tr>
<td></td>
<td>Impulse capacitor 2.5μF</td>
<td>Impulse capacitor 2.5μF</td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 2.5μF</td>
</tr>
<tr>
<td></td>
<td>Source Impedance 40 Ω</td>
<td>Source Impedance 40 Ω</td>
<td>Source Impedance 40 Ω</td>
<td>Source Impedance 40 Ω</td>
</tr>
<tr>
<td></td>
<td>Maximum energy 840 Joule</td>
<td>Maximum energy 840 Joule</td>
<td>Maximum energy 840 Joule</td>
<td>Maximum energy 840 Joule</td>
</tr>
<tr>
<td></td>
<td>Pulse front time 1.2 μs</td>
</tr>
<tr>
<td></td>
<td>Pulse duration 50 μs</td>
<td>Pulse duration 50 μs</td>
<td>Pulse duration 50 μs</td>
<td>Pulse duration 50 μs</td>
</tr>
<tr>
<td></td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
<td>Polarity positive, negative, alternating</td>
</tr>
<tr>
<td>MIG3603C</td>
<td>Voltage range 2 up to 36kV</td>
</tr>
<tr>
<td></td>
<td>Voltage increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
<td>电压 increment 3 digit plus comma</td>
<td>3 digit plus comma</td>
</tr>
<tr>
<td></td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 1.67μF</td>
<td>Impulse capacitor 1.67μF</td>
</tr>
<tr>
<td></td>
<td>Maximum energy 1110 Joule</td>
<td>Maximum energy 1110 Joule</td>
<td>Maximum energy 1110 Joule</td>
<td>Maximum energy 1110 Joule</td>
</tr>
<tr>
<td></td>
<td>Source Impedance 12 Ω</td>
<td>Source Impedance 12 Ω</td>
<td>Source Impedance 12 Ω</td>
<td>Source Impedance 12 Ω</td>
</tr>
</tbody>
</table>

Component Tests: Insulation Test System
Component Tests: Insulation Test System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse front time</td>
<td>1.2 µs</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>50 µs</td>
</tr>
<tr>
<td>Short circuit waveshape</td>
<td>8/20 µs</td>
</tr>
<tr>
<td>Polarity</td>
<td>positive, negative, alternating</td>
</tr>
</tbody>
</table>

Combination Wave 1.2/50µs (8/20µs)

- **Voltage range**: 0.25 up to 6kV
- **Voltage increment**: 3 digit plus comma
- **Impulse capacitor**: 10µF
- **Source Impedance**: 2 Ω
- **Maximum energy**: 180 Joule
- **Pulse front time**: 1.2 µs
- **Pulse duration**: 50 µs
- **Short circuit waveshape**: 8/20 µs
- **Polarity**: positive, negative, alternating

Impulse Voltage 1.2/50µs

- **Voltage range**: 0.25 up to 6kV / 2 up to 36kV
- **Voltage increment**: 3 digit plus comma
- **Source Impedance**: 500 Ω
- **Pulse front time**: 1.2 µs
- **Pulse duration**: 50 µs
- **Short circuit waveshape**: 8/20 µs
- **Polarity**: positive, negative, alternating

MIG4803

Impulse Voltage 1.2/50µs

- **Voltage range**: 2 up to 48kV
- **Voltage increment**: 3 digit plus comma
- **Impulse capacitor**: 10µF
- **Source Impedance**: 50 Ω
- **Pulse front time**: 1.2 µs
- **Pulse duration**: 50 µs
- **Polarity**: positive, negative, alternating

Combination Wave 1.2/50µs (8/20µs)

- **Voltage range**: 0.25 up to 6kV
- **Impulse capacitor**: 10µF
- **Source Impedance**: 2 Ω
- **Maximum energy**: 180 Joule
- **Pulse front time**: 1.2 µs
- **Pulse duration**: 50 µs
- **Short circuit waveshape**: 8/20 µs
- **Polarity**: positive, negative, alternating

Impulse Voltage 1.2/50µs

- **Voltage range**: 0.25 up to 6kV
- **Impulse capacitor**: 10µF
- **Source Impedance**: 50 Ω
- **Maximum energy**: 180 Joule
- **Pulse front time**: 1.2 µs
- **Pulse duration**: 50 µs
- **Polarity**: positive, negative, alternating
MIG14403 System

24kV stages starting from 72kV (MIG7203) up to 144kV

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse capacitor</td>
<td>2.2uF</td>
</tr>
<tr>
<td>Source Impedance</td>
<td>48 Ω and 500 Ω</td>
</tr>
<tr>
<td>Maximum energy</td>
<td>650 Joule</td>
</tr>
<tr>
<td>Pulse front time</td>
<td>1.2 µs</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>50 µs</td>
</tr>
</tbody>
</table>

MIG14403

Impulse Voltage 1.2/50µs

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range</td>
<td>4 up to 144kV</td>
</tr>
<tr>
<td>Voltage increment</td>
<td>4 digit plus comma</td>
</tr>
<tr>
<td>Impulse capacitor</td>
<td>375 nF</td>
</tr>
<tr>
<td>Source Impedance</td>
<td>48 Ω and 500 Ω</td>
</tr>
<tr>
<td>Maximum energy</td>
<td>3900 Joule</td>
</tr>
<tr>
<td>Pulse front time</td>
<td>1.2 µs</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>50 µs</td>
</tr>
<tr>
<td>Polarity</td>
<td>positive, negative alternating up to 2 stages (48kV)</td>
</tr>
</tbody>
</table>

MIG7203 (72kV), MIG9603 (96kV) and MIG12003 (120kV) are upgradeable with STAGE2403 up to 144kV

System Flowcharts

Insulation Testing

![System Flowchart](image-url)
TC-MIG24

A test cabinet for EUT with maximum dimensions 12 X 15 x 28cm. Can be used together with MIG 1206, MIG1809 and MIG2412.

TC-MIG24 is linked to the MIG 1206, MIG1809 and MIG2412 safety circuit. Opening the test cabinet disables test voltages. Safety circuit status is indicated by red and green lamps in the test cabinet.

CN-MIG-24

Accessory to MIG1206SPD insulation circuit ONLY. Two test pistols with integrated red and green warning lamps.

CN-MIG4803

Connection box with 2 connection cables to EUT. Cable length 1.5m one red, one yellow, equipped with alligator clips at the EUT side. Personal safety at user own risk.

NW-IEC60065-1

Voltage range up to 10kV in accordance with IEC / EN 60065. Impulse capacitance 1nF. Requires MIG1203 and MIG OPTION STEP.

NW-IEC60065-1A

Voltage range up to 10kV in accordance with IEC / EN 60065 >/= Ed.7; without 4 Mohm parallel resistor. Impulse capacitance 1nF. Requires MIG1203 and MIG OPTION STEP.

MIG OPTION UIC to MIG2403

Extends MIG2403 with a coupling network to superimpose the 1.2/50μs impulse to train power supplies: 3000Vd.c.; 1500Vd.c., 1500Va.c. 50Hz, 1000Va.c. 16 2/3Hz in accordance with UIC 550.
COVER BOX SMALL or LARGE

Cover box for customized connection of generators with high voltage output on top.

SMALL: Dimension 24 x 8 x 8cm. LARGE: Dimension 30 x 23 x 8cm.

MIG OPTION STEP

OPTION STEP to MIG1203. Must be ordered together with NW-IEC60065-1 or NW-IEC60065-1A.

STAGE2403

Extends the generators MIG7203, MIG9603 or MIG12003 up to 144kV. MIG14403 requires 6 stages. Extension of; MIG7303 max. 3 stages, MIG9603 max. 2 stages, MIG12003 max. 1 stage. Generator extension must be made at EMCP.

Software

For remote control of Insulation Testers, an OPTICAL LINK and one of the following software packages is needed:

- GENECS-MIG: This is a relatively simple program that reproduces generator front panel functions on a PC. In addition to remote programming and control of the generators, test report information is available to word processing or other evaluation programs such as EXCEL.

- TEMA Software: Comfortable control of EMC PARTNER generators from a PC. Enables up to four generator types to be included in the same test sequence. Generates an enhanced test report.
EMC PARTNER’s Product Range
The Largest Range of Impulse Test Equipment up to 100kA and 100kV.

Immunity Tests
Transient Test Systems for all EMC tests on electronic equipment. ESD, EFT, surge, AC dips, AC magnetic field, surge magnetic field, common mode, damped oscillatory and DC dips. According to IEC and EN 61000-4-2, -4, -5, -8, -9, -10, -11, -12, -16, -18, -19, -29.

Lightning Tests
Impulse test equipment and accessories for aircraft, military and telecom applications. Complete solutions for RTCA/DO-160 and EUROCAE/ED-14 for indirect lighting on aircraft systems, MIL-STD-461 tests CS106, CS115, CS116 and Telecom, ITU-T .K44 basic and enhanced tests for impulse, power contact and power induction.

Component Tests
Impulse generators for testing: varistors, gas discharge tubes (GDT), surge protective devices (SPDs), X/Y capacitors, circuit breakers, watt-hour meters, protection relays, insulation material, suppressor diodes, connectors, chokes, fuses, resistors, emc-gaskets, cables, etc.

Emission Measurements
Measurement of Harmonics and Flicker in 1-phase and 3-phase electrical and electronic products according to IEC/EN 61000-3-2 and 61000-3-3. HARCS Immunity software adds interharmonic tests, voltage variation and ripple on DC tests according to IEC/EN 61000-4-13, -4-14, -4-17.

System Automation
A full range of accessories enhance the test systems. Test cabinets, test pistols, adapters and remote control software, simplify interfacing with the EUT. Programmable PSU, EMC hardened for frequencies form 16.7Hz to 400Hz. Frequency PS3-SOFT-EXT complies with IEC / EN 61000-4-14 and -4-28.

Service
Our commitment starts with a quality management system backing up our ISO 17025 accreditation. With the SCS number 129, EMC PARTNER provide accredited calibration and repairs. Our customer support team are at your service!
For further information please do not hesitate to contact EMC PARTNER’s representative in your region. You will find a complete list of our representatives and a lot of other useful information on our website:

www.emc-partner.com

The Headquarters in Switzerland

EMC PARTNER AG
Baselstrasse 160
CH - 4242 Laufen
Switzerland
Phone: +41 61 775 20 30
Fax: +41 61 775 20 59
Email: sales@emc-partner.ch
Web-Site: www.emc-partner.com

Your local representative